
Shuffle: a program to randomize lists with optional sequential
constraints

Christophe Pallier
INSERM U562, SHFJ, Orsay, France

Address for correspondence: Christophe Pallier, INSERM U562, SHFJ, 4 pl. du Gal Leclerc, Orsay,
F91401 FRANCE. Email: pallier@lscp.ehess.fr; tel: 33 1 69 86 78 73; fax: 33 1 69 86 78 16

shuffle is a program used to extract random samples or to produce “quasi-randomized” se-
quences of items. It allows to select permutations that avoid repetitions of similar items: The
user can set limits on the number of consecutive occurrences of items associated with some la-
bels, or, can specify the minimal distance separating two items with the same labels.shuffle
is useful for extracting random samples from a dictionary, or for generating quasi-randomized
lists of stimuli that avoid runs of trials belonging to the same categories.

Introduction

Experimental psychologists often need to extract random
samples from lists of items. For example, psycholinguists
typically select subsets of words from dictionaries. The
sampling must be done randomly to allow statistical infer-
ence. Another situation which requires randomization hap-
pens when the experimenter needs to shuffle the order of tri-
als differently for each participant in an experiment. Shuf-
fling and random sampling are related because extracting a
random sample ofn items from a list is equivalent to shuf-
fling the list and selecting the firstn items from the result.

Shuffling the order of trials for each participant aims
to diminish the impact of position-specific effects and of
between-trials interactions. Such interactions can arise when
series of trials contain long sequences with similar charac-
teristics; for example, successive trials may contain stimuli
that have similar features, or may map systematically onto
the same response. It is known that response times of par-
ticipants are sensitive to such local repetitions (Luce, 1986).
Therefore, an experimenter may want to avoid long runs of
similar trials. In some cases, such as in long-term repetition
priming experiments, it is even necessary that similar items
be separated by a minimum number of intervening trials.

This paper presentsshuffle, a program designed to ex-
tract random samples and to ‘quasi-randomize’ the order of
items in a list while avoiding long runs of similar items, or
while imposing a minimum interval between instances com-
ing from specific categories of items.

Using ‘shuffle’

The package “shuffle” contains two programs:
shuffle.pl and shuffle tk.pl. The first is to be

E-mail: pallier@lscp.ehess.fr. Web: http://www.
pallier.org

used on the command line, while the second provides a
graphical interface. New users will probably prefer the
version with a graphical interface. The command line
version, however, has the advantage that it is faster to
run, and can be used as a building block in more complex
programs; it will therefore appeal more to advanced users.
Figure 1 shows the interface of shuffletk.pl.

The main part of the window consists of a text area where
the list of items can be edited directly or can be pasted from
the clipboard. The list can also be read from a text file with
the ‘Open File’ button. The items in the list must appear on
successive lines. Pressing the ‘Shuffle!’ button shuffles the
lines from the text area, applying a random permutation to
the original lines.

To output only a random subset of the original list, the
number of desired items must be entered in the “N=” box.
This shuffles the whole list, yet displays only the first “N”
items from the results.

Another option, the “seed”, can be used to enter a number
that is used to initialize the random number generator; this
number thus characterizes the permutation generated. The
same number can be used to apply the same permutation to
several lists.

When the “Constraints” box is empty, all permutations are
allowed and are equiprobable, meaning that any of the poten-
tial n! permutations has a 1/n! probability of being applied.
To set constraints on permissible permutations, it is possible
to enter a series of numbers in the “constraint” box. This
option is meaningful only when the input text is in tabular
format, that is when each line contains the same number of
tokens separated by spaces (as in figure 1). The tokens in
some or all of the columns may be considered as “labels”
corresponding to levels of experimental factors. It is then
possible to reject permutations in which the labels are re-
peated across successive lines more than a fixed number of
times.

Theith number in the constraint box corresponds to theith

column in the input. When set to ’0’, there is no constraint



2 CHRISTOPHE PALLIER

Figure 1. Main window of shuffletk

in the relevant column. When set to a positive number, this
number indicates the maximum number of repetitions in the
corresponding column (across successive lines). When set
to a negative number, e.g.−n, this indicates that a leastn
lines must separate two occurrences of the same label. For
example, if the second column of the list contains a label
‘Word’ or ‘Pseudo’, as in the list shown in Figure 1, one can
avoid permutations in which more than four consecutive lines
contain the same label by setting the constraints to ‘0 4’.

Using negative numbers as constraints is useful, for ex-
ample, to generate lists where a small number of targets
are spread among a larger number of filler items: a column
could be created containing either the label ‘TARGET’ or
’FILLERxxx’ where ‘xxx’ varies for each filler. If the con-
straint ‘-10’ is associated with this column, targets will be
separated by at least 10 fillers.

There are actually two different algorithms to generate
constrained permutations. The first is a very simple one: it
randomizes the lists and checks whether the result respects
the constraints. If not, the permutation is discarded and a new
one is tried (The maximum number of trials can be specified
with in the ‘iter’ box).

The second algorithm is more clever: it also starts by ran-
domizing the order, but then, it scans the result line by the
line and rearranges the order when any of the constraints is
violated. This algorithm almost always find a solution, even
when the constraints put very strong restrictions on permis-
sible permutations.

Both algorithms are provided because the first one guar-
antees an equiprobable draw from the set of all permissible
permutations, which is sometimes desirable. However, it will
often fail to find a suitable solution. This is why the second
algorithm is used by default. To select the simple algorithm,
the option ‘Equiprob’ must be checked.

The command line version of the program, “shuffle.pl”,

has the same options as the graphical version, but they are
passed as arguments on the command line. Listing 1 shows
a few examples of its usage. Note that in these examples,
‘shuffle’ takes its input from the file ‘sample.txt’ and prints
the result on the terminal. To save it in a file, the redirection
operator ’>’ must be used.

Proof of equiprobability

The pseudo-code for the generation of an unconstrained
random permutation fits in two lines:

Read line[1] to line[N]
For i := N downto 2 do swap( line[i], line[random(i)] )

The functionrandom returns a random number between 1
and its argument. The functionswap exchanges two lines.

We are going to use the recurrence principle to demon-
strate that this algorithm makes all the permutations of the
lines equiprobable (that is, each line has a probability of 1/n
of appearing with any of the output rank). It helps to note that
the previous code is the iterative equivalent of the following
recursive algorithm:

function perm(n) {
swap(line[n],line[random(n)])
if n>1 then perm(n-1)

}

For n = 2, line[2] is swapped either with line[1] or with
line[2] (itself), each case having probability 1/2. Therefore
the two permutations, (1,2) and (2,1), are equiprobable.

Let us suppose that the algorithm generates equiprobable
permutations up until rankn−1 (that is, any given line has
probability 1/(n−1) of occurring in any given output rank,
for a permutation of sizen−1). To generate a permutation
of rank n, the algorithm first swaps thenth line randomly



SHUFFLING LISTS WITH CONSTRAINTS 3

Figure 2. Listing 1: a few examples of shuffle’s use

shuffle -? # to display a short help
shuffle sample.txt
shuffle -n10 sample.txt # limits output to 10 lines
shuffle -n10 sample.txt # new permutation of 10 lines
shuffle -n5 -s134 sample.txt # sets the seed of the random generator
shuffle -n5 -s134 sample.txt # you get the same permutation as before...
shuffle -n8 -c’2’ sample.txt # no more than 2 successive lines with

# the same label in column 1
shuffle -n8 -c’0 3’ sample.txt # no more than 3 successive lines with

# the same label in column 2
shuffle -n8 -c’2 2’ sample.txt # no more than 2 successive lines with

# the same label in column 1 or column 2
shuffle -n8 -c’1 1’ sample.txt # not much room for randomness
shuffle -e -c’1 2’ sample.txt # use the ‘equiprob’ algorithm

with one of the lines between 1 andn, therefore each line
has the same probability, 1/n, of occurring in output rank
n. Then the algorithm applies itself recursively to then−1
first elements; the recurrence hypothesis applies: alln− 1
lines have an equal probability 1/(n−1) of being assigned
any given output rank between 1 andn− 1. Therefore, a
given line (with rank between 1 andn) has a probability of
(n−1)/n×1/(n−1) = 1/n to be assigned to any given out-
put rank between 1 andn−1.

Algorithm for constrained
permutations

As said earlier,shuffle provides two algorithms to gen-
erate constrained permutations. The first simply filters the
output of the unconstrained algorithm: permutations are gen-
erated until one is found that fulfills the constraints or until a
threshold on the maximum number of trials is reached. This
random search in the space of permutations is not efficient,
but it guarantees the absence of bias in the selection of the
constrained permutation.

The second algorithm generates a constrained permutation
similarly to the way in which a human would do it by hand.
First, an unconstrained permutation of the input lines is gen-
erated; the algorithm then checks, from the first line down-
ward, whether of not all constraints are fulfilled. Every time a
line is found that violates a constraint, the algorithm searches
systematically for an acceptable line further down the list. If
such a line is found, the algorithm swaps it with the line vi-
olating the constraint. If no acceptable line can be found,
the current permutation is abandoned and a new one is tried.
Our experience is that this algorithm find suitable solutions
even in when the constraints are very strong. For example, if
a column contains 50 labels ’Words’ and 50 labels ’Pseudo’
and the corresponding constraint is set to 1, then the only
acceptable permutations must alternate the labels. While the
first algorithm has practically no chance of finding any such
permutation, the second will find one without difficulty.

Installing shuffle

The “shuffle” package, in zip format, can be down-
loaded from the software page on the author’s web site
(http://www.pallier.org/softs.htm). It contains two programs:
shuffle.pl andshuffle tk.pl. The first is meant to be
used on the command line and the second provides a graph-
ical interface. The package is distributed under the terms
of the GNU General Public License 2 (GPL, 1991), allow-
ing anybody to modify the source code. The programs are
written in Perl (Schwartz & Phoenix, 2001). Therefore, be-
fore using them, an interpreter for the language Perl must
be installed on your computer; moreover the graphical ver-
sion requires the Tk module for Perl (Walsh, 1999). Below,
we provide the installation directions for Linux/unix and for
Windows.

Linux/unix

Perl is pre-installed in most Linux/unix distributions; oth-
erwise, it can always be downloaded the “Comprehensive
Perl Archive Network” (http://www.cpan.org). To use the
graphical version, you may have to install the Tk module. To
check whether it is installed on a system, try to run ‘Perl -
MTk’: in case an error message is issued, the module is not
installed. It can be installed by the superuser by calling ‘perl
-MCPAN -e shell’ and typing ‘install Tk;’ (see ‘man CPAN’
for detailed information on installing perl modules).

Copy shuffle.pl and shuffle tk.pl in a directory
listed in the PATH variable (e.g.̃ /bin). You may need
to edit the first line of both programs to reflect to actual lo-
cation of perl on the system (as revealed by the command
‘which perl’). The default version of the files assumes that
the perl program is located at/usr/bin/perl, but you may,
for example, have to change this to/usr/local/bin/perl.
Finally, you can create a link to shuffle.pl in the same direc-
tory with the command “ln -s shuffle.pl shuffle”.

Mac OS-X is based on a unix variant, BSD, and perl
comes installed by default. The command line version
therefore works quite well. However, the installation
of the Tk module, which is necessary for the graphi-
cal version, though possible, is currently (in the spring



4 CHRISTOPHE PALLIER

2002), quite involved and reserved to advanced users (cf.
http://www.lehigh.edu/˜sol0/Macintosh/X/ptk.)

Windows

A free Perl interpreter which includes the Tk module is
available at http://www.activestate.com/Products/ActivePerl.
The download is about 8Mb. Windows 95 users also have
to download the Microsoft Installer version 2. Once Perl is
setup, to install the “shuffle” package, you need to:

1. Copyshuffle.pl andshuffle tk.pl in a directory
listed in the PATH variable, e.g.c:/Perl/bin.

2. Create a new shortcut on the desktop, associated with
the command ‘perl c:/perl/bin/shuffletk.pl’. Clicking on the
associated icon will then launch the graphical program im-
mediately.

3. In using the command line version, to avoid typing“perl
c:/perl/bin/shuffle.pl” all the time, you can define an alias
with the program ‘doskey’ by adding the following line in
‘autoexec.bat’:
doskey shuffle=perl c:\perl\bin\shuffle.pl $*

References

GPL. (1991).GNU general public license.(Version 2. Published
by the Free Software Fondation,http://www.fsf.org)

Luce, R. D. (1986). Response times: Their role in inferring el-
ementary mental organization.New York: Oxford University
Press.

Schwartz, R. L., & Phoenix, T. (2001).Learning Perl.O’Reilly.
Walsh, N. (1999).Learning Perl/Tk.O’Reilly.


