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Background: Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form
of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite
numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult
populations (especially working memory and language production), the paradigms utilized and results
reported in the literature are extremely variable. To address this, we conduct the largest quantitative
review of the cognitive data to date.
Methods: Single-session tDCS data in healthy adults (18e50) from every cognitive outcome measure
reported by at least two different research groups in the literature was collected. Outcome measures
were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To
account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each
with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were
generated for included studies and pooled for each analysis.
Results: Of the 59 analyses conducted, tDCS was found to not have a significant effect on any e regardless
of inclusion laxity. This includes no effect on any working memory outcome or language production task.
Conclusion: Our quantitative review does not support the idea that tDCS generates a reliable effect on
cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises
important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for
this tool in cognitive research.

� 2015 Elsevier Inc. All rights reserved.
Introduction

Since its modern resurgence at the turn of the century,
transcranial direct current stimulation (tDCS) e a noninvasive
neuromodulatory device e has been steadily growing in popularity
within both the academic and clinical research sectors. Current
theory suggests that tDCS, via time-dependent and polarity specific
modulation of neuronal firing patterns, can markedly and predict-
ably enhance a number of higher-order cognitions and behaviors.
However, a recent systematic review of the neurophysiologic
literature undertaken by this group [1] questions the reliability and
significance of tDCS effects on all but one neurophysiologicmeasure
tested. Here, we undertake a quantitative review of the cognition
literature to determine if tDCS shows a reliable effect on any
cognitive tasks.
J.C. Horvath).
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A brief review of proposed tDCS mechanisms of action

tDCS is most commonly delivered via 2 electrodese 1 anode and
1 cathode e affixed to the scalp overlying cortical regions relevant
to the outcome measure of interest [2]. It is believed that passing a
weak electric current (typically 0.5e2.0 mA) between these two
electrodes modulates neuronal firing patterns in the cortical re-
gions underlying the electrodes via twomechanisms of actions. The
first occurs during stimulation and involves ionic concentration
shifts within the extracellular fluid which serve to modulate
neuronal resting membrane potentials thereby hypo- and hyper-
polarizing neurons underlying the anode and cathode, respec-
tively [3]. The second occurs following long duration (>7 min)
stimulation and involves long-term potentiation and depression-
like mechanisms at the synaptic level thereby effecting hyper-
and hypo-communicative activity in neurons underlying the anode
and cathode, respectively [3]. To account for these different
mechanisms, in this paper we divide studies according to whether
iversity of Melbourne April 09, 2016.
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the outcome measures were obtained during stimulation (online
protocols) or following stimulation (offline protocols).

Quantitative-review structure

The poolable cognitive tasks in the literature can be grouped
into 4 broad categories: executive functions, language, memory,
and miscellaneous. Accordingly, the methods and results sections
will be structured around these domains. To be included in this
review, the effects of tDCS on a given task must have been explored
by at least two different research groups using a comparable tDCS
protocol. A full list of studies that assessed the relevant aspects of
cognitive function but did not meet these inclusion criteria can be
found in Supplemental Material (Fig. S1; Table S3). Each poolable
outcome measure that satisfied our inclusion criteria is introduced
briefly below.

Executive functions

Executive functions (EFs) are often regarded as a coordinated set
of cognitive processes which allow an individual to override more
instinctual or automatic responses in order to achieve a specified
goal [4]. The following three EF measures met inclusion criteria for
this review.

Set-shifting
Individuals must determine which target/s amongst a series of

targets are “correct” based on an unspecified rule-set via arbitrarily
guessing (e.g. e red fruit amongst a series of food-based images).
Occasionally, and without warning or explication, the rule-set will
change (e.g. e round vegetables amongst a series of food-based
images). Improved performance on this task is reflected by a
reduction in the time taken to notice this change, abandon the prior
rule-set, and learn the new rule-set [5].

Stop signal task
Individuals are repeatedly presentedwith a target (e.g.e a visual

circle) and asked to respond as quickly as possible each time it
appears. Occasionally, however, the target will be paired with a
secondary stimulus (e.g. e an auditory beep); in this instance, the
individual should not respond to the target. This task is ameasure of
automatic response inhibition [6].

Stroop task
Individuals are presented with stimuli which contain multiple,

uniquely processed dimensions (e.g. e the word ‘red’ written in a
green colored font), of which the individual must respond to only
one. The speed which with a person can accurately respond is a
measure of selective attention and goal maintenance [7].

Language

Linguistic-based cognitive tasks utilize language production
speed and accuracy to explore the psychological and neurobiolog-
ical factors that enable humans to produce and comprehend speech
[8]. The following three language measures met inclusion criteria
for this review.

Picture-to-word novel-language learning
Individuals are presentedwith paired images and pseudo-words

or words from an unfamiliar language andmust learn the pairing of
the two. The accuracy with which one can respond to correctly- or
incorrectly-joined pairs is thought to be a measure of linguistic
learning [9].
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Picture naming
Individuals are presented with a series of images (either simple

line drawings or photos) and asked to name them as quickly as
possible. The time taken to accurately name each object is a mea-
sure of lexical access, or ‘word-finding ability’ [10].

Verbal fluency
Individuals are presented with a phonemic category (e.g. e the

letter ‘p’) or a semantic category (e.g.e animals) and asked to name as
manywordsaspossiblefromsaidcategorywithinaspecifiedtimelimit.
The number ofwords produced is ameasure of semantic access [11].

Memory

Memory-based cognitive tasks utilize memorization and recall
speed/accuracy to explore the structures and processes involved in
the effective storage and retrieval of information [12]. The following
five memory measures met inclusion criteria for this review.

Digit-span recall
Individuals are sequentially presented with verbal strings of

numbers which sequentially increase in length and are asked to
verbally report the numbers following each presentation. The
length of the final number string an individual is able to accurately
report back is a measure of digit-span recall WM [13].

Verbal episodic memory
Individuals are presented with a list of words several times and

asked to memorize it (encoding). Following a delay period
(consolidation), during which time the individual is distracted with
non-relevant tasks, the individual is presented with ‘target’ words
and asked whether or not each was present in the prior memorized
list. The accuracy with which an individual responds to the targets
is a measure of verbal episodic recognition memory. An identical
procedure, though replacing words with visual images, is utilized as
a measure of visual episodic recognition memory [14].

Visual WM
Individuals are sequentially presented with a string of visual

images. Following each string, a single target is visually presented
and the individual must respond whether or not said target was in
the prior string. The speed and accuracy with which an individual
responds to the target is a measure of visual WM [15].

N-back WM
Individuals are presented with a sequential string of stimuli

(e.g. e letters or numbers) and asked to generate a response if a
stimulus is identical to the one presented ‘N’ items prior. The accu-
racy and speed with which an individual responds to targets is a
measure ofWM according to themodality of the stimuli utilized [16].

Miscellaneous

An additional four measures met inclusion criteria for this re-
view but could not be grouped into any single cognitive domain.

Mental arithmetic
Individuals are asked to complete simple arithmetic math

problems in their head. The speed and accuracy with which an
individual can complete these problems is a measure of computa-
tional efficiency [17].

Picture viewing/rating
Individuals are asked to view and rate a series of images of

differing valences (typically negative and neutral). The average
niversity of Melbourne April 09, 2016.
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Figure 1. Forest plots for both primary and secondary executive function analyses (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses;
DL ¼ DerSimonian-Laird mixed-effect model for secondary analyses; Parentheses represent 95% CI).

Table 1
Studies and values for executive function task primary analyses.

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Set shifting tasks e anode/offline: ERRORS
[25] 30 lDLPFC rORBIT 0.0286 Cog 0.20 (�0.21, 0.61) 0.978 0.328

30 lDLPFC rORBIT 0.0286 Motor �0.30 (�0.81, 0.21) �1.150 0.250
[26] 46 lDLPFC rORBIT 0.0286 Cog 0.08 (�0.42, 0.59) 0.325 0.745

Fixed effect model 0.03 (�0.27, 0.32) 0.207 0.836
Stop signal task e anode/offline: NO STOP REACTION TIME
[27] 11 rIFG lORBIT 0.04 e �0.10 (�0.93, 0.74) �0.225 0.822
[28] 10a/12s rIFG lORBIT 0.0429 e �0.91 (�1.79, �0.03) �2.023 0.043

Fixed effect model �0.48 (�1.09, 0.13) �1.555 0.12
Stop signal task e anode/offline: STOP SIGNAL REACTION TIME (IFG)
[27] 11a/22s rIFG lORBIT 0.04 e �0.21 (�0.93, 0.52) �0.554 0.580
[28] 10a/12s rIFG lORBIT 0.0429 e �0.13 (�0.97, 0.71) �0.300 0.764

Fixed effect model �0.17 (�0.72, 0.38) �0.615 0.538

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized mean difference; A ¼ Active; S ¼ Sham; DLPFC ¼ Dorsolateral
prefrontal cortex; ORBIT ¼ Orbitofrontal location; IFG ¼ Inferior frontal gyrus.
Set shifting: Two studies from [25] were omitted due to targeting M1 (no comparable work elsewhere).
Stop signal: All sham participants were pooled for [27].
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Table 2
Studies and values for executive function task secondary analyses.

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Stop signal task e anode/offline: STOP SIGNAL REACTION TIME (M1)
[32] 14a/28s rM1 lCHK 0.0938 e �0.13 (�0.77, 0.52) �0.381 0.704
[30] 30 rM1 lORBIT 0.0286 e �0.20 (�0.70, 0.31) �0.753 0.451
[33] 40 rM1 lORBIT 0.0286 e �0.30 (�0.75, 0.14) �1.353 0.176

DL model �0.23 (�0.53, 0.07) �1.521 0.128
Stop signal task e anode/offline: STOP SIGNAL REACTION TIME (pSMA)
[32] 14a/28s rpSMA lCHK 0.0938 e �0.11 (�0.76, 0.53) �0.347 0.728
[33] 40 rpSMA lORBIT 0.0286 e �1.30 (�1.78, �0.81) �5.267 <0.001
[34] 18 rpSMA lCHK 0.0938 e �0.33 (�0.98, 0.33) �0.973 0.331

DL Model �0.60 (�1.38, 0.17) �1.532 0.125
Stroop task e anode/offline: COMPLETION TIME (lDLPFC)
[35] 10 lDLPFC rDLPFC 0.0571 e 1.31 (0.34, 2.27) 2.650 0.008
[36] 12 lDLPFC rDLPFC 0.0571 e 0.87 (0.03, 1.70) 1.032 0.042
[37] 8 lDLPFC rORBIT 0.0286 e �0.54 (�1.54, 0.46) �1.059 0.290

DL model 0.56 (�1.60, 0.48) 1.056 0.291
Stroop task e anode/offline: COMPLETION TIME (rDLPFC)
[35] 10 rDLPFC lDLPFC 0.0571 e 0.81 (�0.11, 1.72) 1.734 0.083
[36] 12 rDLPFC lDLPFC 0.0571 e 0.58 (�0.24, 1.40) 1.387 0.165
[37] 8 rDLPFC lORBIT 0.0286 e �0.12 (�1.10, 0.86) �0.236 0.831

DL model 0.49 (�0.06, 0.98) 1.737 0.082

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized mean difference; A ¼ Active; S ¼ Sham; DLPFC ¼ Dorsolateral
prefrontal cortex; ORBIT ¼ Orbitofrontal location; IFG ¼ Inferior frontal gyrus; CHK ¼ Cheek; pSMA ¼ Pre-supplementary motor area.
Stop signal: All sham participants were pooled for [32]. [30] presented conflicting data regarding the number of participants: we used the N presented in the results section
(n ¼ 30).
Stroop task: [38] and [39] were omitted due to utilizing a 6-day and 5-day multiple-day stimulation protocol, respectively (no day 1 data); though, each reported no effect of
stimulation on the Stroop task.
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rating generated within each valence is a measure of emotional
processing [18].

Gambling based risk taking
Individuals participate in a ‘gambling-type’ scenario whereby

different actions carry varying, yet clearly understood, consequences
(e.g. e choose between two boxes, the first of which has a 90%
probability of containing $1 whilst the second has a 10% chance of
containing $10). The number of low-probability/high-reward choices
an individual selects is a measure of risk-taking propensity [19,20].

Rumination
Individuals are asked to report about the frequency and in-

tensity of mentally generated self-referential thoughts (typically
following a pre-arranged negative valence-type scenario, such as
receiving a negative grade on an exam) [21].
Table 3
Studies and values for language-based task primary analyses.

Study N Active Ref Density (mA/cm

Novel language learning task (Pictures to words) e anode/offline: ACCURACY
[40] 19 WNKE rORBIT 0.0286
[41] 10 WNKE rORBIT 0.0286

Fixed effect m
Picture naming task e anode/offline: RT
[42] 12 lDLPFC rSHLD 0.0571
[43] 20 lDLPFC rSHLD 0.0429

Fixed effect m
Verbal fluency task e anode/offline: NUMBER OF WORDS GENERATD
[44] 12 lDLPFC rORBIT 0.0613
[45] 10 lDLPFC (þBroca) rORBIT 0.0571

10 lDLPFC (þBroca) rORBIT 0.0571
[46] 18 lDLPFC rORBIT 0.0571

18 lDLPFC (þBroca) rORBIT 0.0571
18 lDLPFC (þBroca) rORBIT 0.0571

Fixed effect m

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD
RT ¼ Reaction time; DLPFC ¼ Dorsolateral prefrontal cortex; ORBIT ¼ Orbitofrontal locat
Picture naming: [37] was omitted from analysis as no quantitative RT data was reported.
Verbal fluency: [47] was omitted from analysis as the young cohort only undertook sham
though they verbally reported no effect of stimulation.
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Methods

Study selection

Papers included in this quantitative review were obtained from
a PubMed database search (June 12th, 2014). The search term
“transcranial direct current stimulation” generated 1156 papers.
The abstract of each of paper was then read to determine which
outcome measures were included and what type of population was
utilized. This initial review narrowed the study pool to 417 (see
Supplemental Material: Fig. S1 for complete study selection flow
chart).

Following this, each article was read and the tasks/outcome
measures utilized were noted and organized to identify all outcome
measures utilized by at least two different research groups. We
chose to exclude measures that have only been replicated by a
2) Task SMD (95% CI) Z value P value

e 0.18 (�0.46, 0.82) 0.553 0.580
e 0.28 (�0.60, 1.16) 0.624 0.533

odel 0.21 (�0.30, 0.73) 0.814 0.416

e �0.09 (�0.89, 0.71) �0.217 0.829
e 0.04 (�0.58, 0.66) 0.135 0.893

odel �0.01 (�0.50, 0.48) �0.026 0.979

PHN 0.23 (�0.57, 1.4) 0.568 0.570
SMT 1.00 (0.07, 1.93) 2.110 0.035
PHN 0.63 (�0.27, 1.53) 1.381 0.167
SMT �0.23 (�0.89, 0.42) �0.700 0.484
SMT 0.43 (�0.29, 1.09) 1.283 0.199
SMT �0.27 (�0.93, 0.39) �0.809 0.418

odel 0.20 (�0.11, 0.50) 1.259 0.208

¼ Standardized mean difference; A ¼ Active; S ¼ Sham; WNKE ¼ Wernicke’s area;
ion; PHN ¼ Phonemic; SMT ¼ Semantic.

stimulation. [48] did not supply quantitative data for the phonemic fluency task,

niversity of Melbourne April 09, 2016.
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Figure 2. Forest plots for both primary and secondary language analyses (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses; DL ¼ DerSimonian-Laird
mixed-effect model for secondary analyses; Parentheses represent 95% CI).
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single research group to ensure all data included in and conclusions
generated by this review accurately reflect the effects of tDCS itself,
rather than any unique device, protocol, or condition utilized in a
single lab. Examples of non-experimentally based systematic errors
reliably influencing the results generated by a single research group
can be found in all the sciences, from physics (see: Ref. [22]), to
biology (see: Ref. [23]), to medicine (see: Ref. [24]). Due to this
inclusion criterion, a number of cognitive outcomemeasures extant
in the literature were omitted due to only being reported by a single
research group (see Supplemental Material: Table S2). We want to
emphasize that this does not suggest said research is in any way
faulty or incorrect; rather, that inter-group replication is necessary
in order to eliminate any potential non-tDCS influential outcome
factors.

Next, the stimulation-to-task relationship was determined for
each study. As the mechanism of tDCS is thought to differ during
and following stimulation (see above), included papers were
divided into those which utilized an ‘online’ protocol and those
which utilized an ‘offline’ protocol. Following this, we further
divided studies according to the location chosen for the active
stimulating tDCS electrode and whether or not anodal or cathodal
stimulation was utilized. Finally, all studies not including a sham
condition were omitted.

Analysis

Our initial intention was to pool only studies which utilized
identical stimulation current densities and electrode montages.
However, a look at the results section reveals there is very little
direct replication in the literature. Accordingly, we decided to
dichotomize current density values (low ¼ 0.0286 mA/cm2;
high > 0.0286 mA/cm2) and assessed the respected effects
independently.
Downloaded from ClinicalKey.com.au at Un
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Next, continuous mean and variation data was extracted from
each included study. If continuous numerical datawas not included,
values were extracted from included images (achieved by exporting
images to an image editing program, overlaying a standardized
grid, and counting relevant values by hand). For each included
study, active stimulation values were compared to sham (control)
values and a standard mean difference (SMD) with 95% confidence
interval (95% CI) effect size was determined. These values were
grouped and analyzed using two different meta-analytic software
tools to ensure accuracy (Comprehensive Meta-Analysis e v2.0,
Biostat, Englewood, NJ, USA; MetaEasy e v1.0.4, Statanalysis,
Manchester, UK). No differences were found in obtained values
from either program; included images were exported from Meta-
Easy v1.0.4. Due to the wide paradigmatic variation and unknown
effect of multiple-day stimulation protocols (e.g. e 10 consecutive
days of anodal stimulation during a learning task), we only analyzed
day 1 data from any study utilizing a multiple-day protocol.

Due to parametric variations within papers, we undertook two
levels of analyses to balance the tradeoff between the maximum
homogeneity achieved by including a smaller number of studies
and our desire to also look for any more generalized effects seen
across a broader sample of studies. Our primary analysis was
limited to studies utilizing the same cognitive task with identical
tDCS current densities and reference electrode locations. For this
analysis, a fixed-effect (FE) model was utilized since, as the tDCS
parameters and task were the same between studies, one would
expect fairly homogenous results.

For our secondary analysis, all studies which utilized the same
outcome measure were pooled and analyzed, regardless of current
density and/or reference electrode location. This analysis included
both the studies utilized in the first analysis and any additional
study that used different current density and/or electrode montage.
For this larger analysis, a DerSimonian-Laird (DL) mixed-effects
iversity of Melbourne April 09, 2016.
opyright ©2016. Elsevier Inc. All rights reserved.



Figure 3. Forest plots for both primary and secondary memory task analyses (n-back excluded) (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses;
DL ¼ DerSimonian-Laird mixed-effect model for secondary analyses; Parentheses represent 95% CI).
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model was selected since, as current density and reference elec-
trode location parameters were variable, one would expect more
heterogenous results. As these parameters were chosen prior to
analysis, homogeneity I2 values will not be reported below.

Several studies in the literature have explored outcome mea-
sures included in the analysis below whilst targeting a neural
Downloaded from ClinicalKey.com.au at U
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region not replicated by a second group. Unfortunately, as these
studies did not meet our inclusion criteria, we were unable to pool
or meaningfully analyze them. For a list of these studies which have
explored one of the outcome measures included in this paper but
which targeted a different, non-replicated neural region, please see
Supplementary Material (Table S2)
niversity of Melbourne April 09, 2016.
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Table 4
Studies and values for executive function task secondary analyses.

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Verbal fluency task e anode/online: NUMBER OF WORDS GENERATD
[44] 18 lDLPFC rORBIT 0.0613 PHN �0.17 (�0.82, 0.49) �0.494 0.621
[48] 12 lDLPFC Cz 0.0370 SMT 0.49 (�0.32, 1.30) 1.185 0.236
[51] 20 lDLPFC (þBroca) rORBIT 0.0286 SMT 0.73 (0.09, 1.38) 2.247 0.025

DL model 0.35 (�0.22, 0.91) 1.210 0.226
Verbal fluency task e anode/offline: NUMBER OF WORDS GENERATD
[44] 12 lDLPFC rORBIT 0.0613 PHN 0.23 (�0.57, 1.4) 0.568 0.570
[45] 10 lDLPFC (þBroca) rORBIT 0.0571 SMT 1.00 (0.07, 1.93) 2.110 0.035

10 lDLPFC (þBroca) rORBIT 0.0571 PHN 0.63 (�0.27, 1.53) 1.381 0.167
[46] 18 lDLPFC rORBIT 0.0571 SMT �0.23 (�0.89, 0.42) �0.700 0.484

18 lDLPFC
(þBroca)

rORBIT 0.0571 SMT 0.43 (�0.29, 1.09) 1.283 0.199

18 lDLPFC (þBroca) rORBIT 0.0571 SMT �0.27 (�0.93, 0.39) �0.809 0.418
[46] 18 lDLPFC (þBroca) rDLPFC 0.0571 SMT 0.29 (�0.37, 0.95) 0.869 0.385

DL model 0.23 (�0.09, 0.55) 1.406 0.160

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized mean difference; A ¼ Active; S ¼ Sham; WNKE ¼ Wernicke’s area;
RT ¼ Reaction time; DLPFC ¼ Dorsolateral prefrontal cortex; ORBIT ¼ Orbitofrontal location; PHN ¼ Phonemic; SMT ¼ Semantic.
Verbal fluency: [47] was omitted from analysis as the young cohort only undertook sham stimulation. [48] did not supply quantitative data for the phonemic fluency task,
though they verbally reported no effect of stimulation. 1 study from [48] was omitted as it did not include numerical data (though they did verbally report no effect of
stimulation on the total number of words generated).
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Results

Executive functions: primary analysis

Set shifting
The directly-replicated anode/offline studies revealed a non-

significant SMD effect size for the number of errors generated
during task completion (Table 1; Fig. 1a). Only 1 study explored
cathodal/offline stimulation [25]and only 1 study explored online
tDCS on this task [29]; accordingly, no analysis was undertaken for
these measures.

Stop signal task
The directly-replicated anode/offline studies revealed a non-

significant SMD effect size for inhibitory reaction time to stop-
signal stimuli (Table 1; Fig. 1c). In addition [27], and [28] further
reported values for reaction time (RT) to non-stop-signal stimuli;
analysis of this measure revealed a non-significant SMD effect size
(Table 1; Fig. 1b). Only 1 study explored the effect of anodal/online
stimulation [30] and only 1 explored the effect of cathodal/offline
stimulation on this task [31]; accordingly, no analysis was under-
taken for these measures.
Executive functions: secondary analysis

Stop signal task
Six non-directly comparable studies explored this task; 3 tar-

geted M1 and 3 targeted pSMA. Analysis of the different locations
revealed no significant SMD effect sizes for inhibitory reaction time
to stop-signal stimuli (Table 2; Fig. 1d,e).

Stroop task
The non-directly comparable studies revealed no significant SMD

effect sizes for task completion time (Table 2; Fig. 1f,g). 2 studies
explored the effects of cathodal/offline stimulation [35,36]. As each
came from the same research group, no analysis was undertaken. No
studieshaveexplored the effectof online stimulationonthismeasure.
Language: primary analysis

Novel language learning task
The directly-replicated anode/offline studies revealed a non-

significant SMD effect size for task accuracy (Table 3; Fig. 3a).
Downloaded from ClinicalKey.com.au at Un
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Interestingly, although [41] noted an effect of stimulation on RT
[40], noted no effect of stimulation on RT: as this later group did not
include any numeric data for this measure (only a verbal report), no
analysis could be undertaken for this measure. No studies have
explored the effect of online or cathodal stimulation on this task.
Picture naming task
Three studies explored the effect of tDCS on this outcome mea-

sure by targeting the temporal lobes (2 from [49], 1 from [50]). Un-
fortunately [49], only reported numerical data for accuracy (verbally
noted no effect of stimulation on RT) whilst [50] only reported nu-
merical data for RT (verbally noted no effect of stimulation on ac-
curacy). Accordingly, no analysiswas undertaken for these papers. In
addition, 4 studies from3 papers have explored the effect of tDCS on
this outcome measure by targeting the left DLPFC [37,42,43]. Un-
fortunately [42], and [43] both reported only numerical data for RT
(though [42] verbally noted no effect of stimulation on accuracy)
whilst [37] only reported numerical data for Accuracy. Accordingly,
an analysis could only be undertaken exploring RT. Analysis of this
measure revealed a non-significant SMDeffect size (Table 3; Fig. 3b).
Although 4 studies from3 papers have explored the effect of anodal/
online stimulation on this task, each targeted a different neural re-
gion; accordingly, no analysis could be undertaken. Finally, although
4 studies from 3 papers have explored the effect of cathodal stimu-
lation on this task, each targeted a different neural region; accord-
ingly, no analysis was undertaken.

Verbal fluency
The directly-replicated anode/offline studies revealed a non-

significant SMD effect size for word generation (Table 3; Fig. 3d).
Three comparable studies have explored the effect of anode/online
stimulation on this task; however, as the current density and
reference electrode location differed between each, wewill explore
this in the secondary analysis (below). No study has explored the
effect of cathodal stimulation on this measure.
Language: secondary analysis

Verbal fluency
The non-directly comparable anode/online and anode/offline

studies revealed no significant SMD effect size for word generation
(Table 4; Fig. 2c,d). No study explored the effect of cathodal stim-
ulation on this measure.
iversity of Melbourne April 09, 2016.
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Table 5
Studies and values for memory task primary analyses (N-Back excluded).

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Digit span working memory task (forward & backward) e anode/offline: SPAN
[52] 10 lDLPFC rORBIT 0.0286 Forward �3.22 (�1.21, 0.56) �0.716 0.474

10 lDLPFC rORBIT 0.0286 Backward 0.483 (�0.41, 1.37) 1.065 0.287
11a/10s lDLPFC rORBIT 0.0286 Forward 0.065 (�0.79, 0.92) 0.148 0.882
11a/10s lDLPFC rORBIT 0.0286 Backward 0.018 (�0.84, 0.87) 0.040 0.968

[37] 8a/16s lDLPFC rORBIT 0.0286 Forward 0.084 (�0.77, 0.93) 0.194 0.846
8a/16s lDLPFC rORBIT 0.0286 Backward �0.25 (�1.10, 0.60) �0.574 0.566

Fixed effect model 0.01 (�0.34, 0.36) 0.056 0.955
Visual working memory e anode/online: ACCURACY
[53] 12 lDLPFC rORBIT 0.0286 STRNBRG 0.000 (�1.62, 0.86) 0.000 1.000
[54] 14 lDLPFC rORBIT 0.0286 STRNBRG 1.14 (0.34, 1.94) 2.803 0.005

Fixed effect model 0.57 (�0.55, 1.70) 1.000 0.317
Visual working memory e anode/online: RT
[53] 12 lDLPFC rORBIT 0.0286 STRNBRG �0.07 (�0.87, 0.73) �0.177 0.859
[54] 14 lDLPFC rORBIT 0.0286 STRNBRG 0.04 (�0.70, 0.78) 0.107 0.915

Fixed effect model �0.01 (�0.55, 0.53) �0.042 0.966
Visual working memory e anode/offline: ACCURACY
[55] 11 rPPC lCHK 0.0429 �0.07 (�0.90, 0.77) �0.153 0.878

11 rPPC lCHK 0.0429 �0.50 (�1.35, 0.35) �1.160 0.246
[56] 20 rPPC lCHK 0.0429 �0.42 (�1.04, 0.21) �1.298 0.194
[57] 9 rPPC lCHK 0.0938 1.06 (0.07, 2.04) 2.099 0.036

20 rPPC lCHK 0.0938 0.14 (�0.48, 0.76) 0.451 0.652
[58] 20 rPPC lCHK 0.0938 0.14 (�0.48, 0.76) 0.451 0.652

Fixed effect model �0.00 (�0.30, 0.29) �0.012 0.991
Visual working memory e cathode/offline: ACCURACY
[55] 11 rPPC lCHK 0.0429 �0.09 (�0.93, 0.75) �0.211 0.833

11 rPPC lCHK 0.0429 �0.66 (�1.52, 0.20) �1.504 0.133
[56] 20 rPPC lCHK 0.0429 0.18 (�0.44, 0.80) 0.569 0.569
[59] 24 rPPC lCHK 0.0429 0.43 (�0.14, 1.00) 1.468 0.142

Fixed effect model 0.09 (�0.26, 0.43) 0.509 0.611
Two-back working memory task e anode/offline: RT
[53] 12 lDLPFC rORBIT 0.02857 2-Back �0.45 (�1.26, 0.36) �1.095 0.274
[60] 18 lDLPFC rORBIT 0.02857 2-Back �0.29 (�0.95, 0.37) �0.868 0.385

Fixed effect model �0.39 (�0.90, 0.12) �1.364 0.173
[61] 10 lDLPFC rORBIT 0.05714 2-Back �0.33 (�1.22, 0.55) �0.741 0.459
[60] 18 lDLPFC rORBIT 0.05714 2-Back �0.02 (�0.68, 0.63) �0.073 0.942

Fixed effect model �0.13 (�0.66, 0.40) �0.499 0.617
Three-back working memory task e anode/online: ACCURACY
[62] 15 lDLPFC rORBIT 0.02857 3-Back 0.31 (�0.41, 1.03) 0.855 0.393
[63] 12 lDLPFC rORBIT 0.02857 3-Back 0.05 (�0.71, 0.81) 0.125 0.901

Fixed effect model 0.19 (�0.33, 0.71) 0.706 0.480
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.36 (�0.37, 1.08) 0.966 0.334
[63] 12 lDLPFC rORBIT 0.05714 3-Back �0.05 (�0.81, 0.71) �0.128 0.898

Fixed effect model 0.16 (�0.36, 0.69) 0.612 0.541
Three-back working memory task e anode/online: RT
[62] 15 lDLPFC rORBIT 0.02857 3-Back 0.00 (�0.71, 0.72) 0.011 0.991
[63] 12 lDLPFC rORBIT 0.02857 3-Back �0.30 (�1.11, 0.50) �0.736 0.462

Fixed effect model �0.13 (�0.67, 0.40) �0.481 0.631
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.01 (�0.70, 0.73) 0.032 0.974
[63] 12 lDLPFC rORBIT 0.05714 3-Back �0.32 (�1.13, 0.48) �0.781 0.435

Fixed effect model �0.14 (�0.67, 0.40) �0.495 0.621

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized mean difference; A ¼ Active; S ¼ Sham; DLPFC ¼ Dorsolateral
prefrontal cortex; ORBIT¼ Orbitofrontal location; DELT¼ Deltoid muscle; ATL¼ Anterior temporal lobe; SMG¼ Supramarginal gyrus; STRNBRG¼ Sternberg working memory
task; PPC ¼ Posterior parietal cortex; CHK ¼ Cheek; IPS ¼ Inferior parietal sulcus; RT ¼ Reaction time.
Digit span: Two sham groups were pooled in Jeon 2013.
Visual working memory: Values collapsed across hemifields and array sizes. Values for the second study from Tseng 2012 and Hsu 2014 are collapsed across all participants
(data appear to be identical for these studies). Bolognini 2010was omitted from analysis as they did not report any data for accuracy. Tanoue 2013 utilized a cueing paradigme

only the data from the cue-less trials was utilized.
N-back tasks: Data for [64] and [63] were collapsed across two online blocks. [60] was omitted from both accuracy and RT analysis due to no discernable quantitative data being
made available. A description in the text noted no effect of either low- or high-density stimulation on accuracy or RT. [52] was omitted from analysis due to not reporting
quantitative data. [65] was omitted due to utilizing a 10-day stimulation protocol (no day 1 data). 1 study from [60] was omitted due to not reporting quantitative data (though
they verbally reported no effect of stimulation on accuracy or RT data during a 3-back task, and no effect on accuracy during a 2-back task).
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Memory: primary analysis

Digit span working memory
The directly-replicated anode/offline studies revealed a non-

significant SMD effect size for span length (Table 5; Fig. 3a). No
studies explored the effects of online or cathodal stimulation on
this task.
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Visual working memory
The directly-replicated anode/online studies revealed a non-

significant SMD effect size for task accuracy or RT (Table 5;
Fig. 3g,h). Similarly, anode/offline studies revealed a non-significant
SMD effect size for task accuracy (Table 5; Fig. 3i). With regards to
cathode/offline stimulation, analysis of the directly-replicated
cathode/offline studies revealed a non-significant SMD effect size
niversity of Melbourne April 09, 2016.
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Figure 4. Forest plots for both primary and secondary n-back task analyses (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses; DL ¼ DerSimonian-
Laird mixed-effect model for secondary analyses; Parentheses represent 95% CI).

J.C. Horvath et al. / Brain Stimulation 8 (2015) 535e550 543
on task accuracy (Table 5; Fig. 3j). No studies explored the effect of
cathodal/online stimulation on this task. Finally, 2 studies have
explored the effect of anode/offline and cathode/offline stimulation
on this task whilst targeting the cerebellum [66,67]. Unfortunately
[66], only reported quantitative data for RT (verbally reported no
effect on accuracy) whilst [67] only reported quantitative data for
accuracy (verbally noted no effect on accuracy); accordingly, no
analysis was undertaken.

N-back working memory
As task difficulty increases with N, we decided to divide and

analyze the remaining studies according to N (so that the effects of
stimulation during a 1-back task do not skew effects during a 3-
back task). Analyses of the directly-replicated studies revealed no
significant SMD effect size for any measure (Table 5; Fig. 4a,e,g).
Memory: secondary analysis

Verbal episodic memory
The non-directly comparable anode and cathode studies during

encoding revealed no significant SMD effect size for task accuracy
(Table 6; Fig. 3b,c). With regards to anode during recognition [69],
only reported numerical data for accuracy (verbally reported no
effect on RT) whilst [82] only reported numerical data for RT
(verbally reported no effect on accuracy); accordingly, no analysis
was undertaken.

Visual episodic memory
The non-directly comparable anodal studies at each electrode

location revealed no significant SMD effect size for task accuracy
(Table 7; Fig. 3d,e). Similarly, the non-directly comparable cathodal
studies revealed a non-significant SMD effect size for task accuracy
(Table 6; Fig. 3f).
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Visual working memory
The non-directly comparable anode/offline studies revealed a

non-significant SMD effect size for task accuracy (Table 6; Fig. 3i).
The non-directly comparable cathode/offline studies also revealed a
non-significant SMD effect size on task accuracy (Table 6; Fig. 3j).
No studies explored the effect of cathodal/online stimulation on
this task.

N-back working memory
Again, as task difficulty increases with N, studies were divided

according to N (so that the effects of stimulation during a 1-back
task did not skew effects during a 3-back task). For a full break-
down, see Table 6 and Fig. 4. Analyses of the non-directly compa-
rable studies revealed no significant SMD effect size for task
accuracy, reaction time, or false alarm rate at any level.

Memory: additional pooled analyses

As many of the aforementioned memory studies utilize tasks
which explore a similar memory system (e.g. e working memory),
we ran 8 additional analyses combining all studies exploring the
same memory system (regardless of specific task utilized). First, we
pooled all anodal/online n-back working memory tasks, regardless
of the ‘n’ value. Analysis revealed no significant SMD effect size for
accuracy SMD ([95% CI] ¼ 0.19 [�0.13, 0.51], z ¼ 1.187, P ¼ 0.235:
Fig. 5a) or RT (SMD [95% CI] ¼ �0.14 [�0.46, 0.18], z ¼ �0.851,
P ¼ 0.395: Fig. 5b). Next, we pooled all anodal/offline n-back
working memory tasks, regardless of the ‘n’ value. Again, analysis
revealed no significant SMD effect size for accuracy (SMD [95%
CI] ¼ 0.29 [�0.02, 0.60], z ¼ 1.845, P ¼ 0.065: Fig. 5e) or RT (SMD
[95% CI] ¼ �0.16 [�0.42, 0.09], z ¼ �1.266, P ¼ 0.206: Fig. 5f). Next,
we pooled all anodal/online tasks exploring working memory (with
a similar neural target). Again, analysis revealed no significant SMD
effect size for accuracy (SMD [95% CI]¼ 0.29 [�0.04, 0.61], z¼ 1.699,
P ¼ 0.089: Fig. 5c) or RT (SMD [95% CI] ¼ �0.10 [�0.37, 0.17],
iversity of Melbourne April 09, 2016.
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Table 6
Studies and values for memory task secondary analyses (N-Back excluded).

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Verbal episodic memory task: recognition (stim during encoding) e anode: ACCURACY
[68] 18 lDLPFC rORBIT 0.0286 Errorless Learning �0.17 (�0.82, 0.49) �0.502 0.616

18 lDLPFC rORBIT 0.0286 Errorful Learning 0.268 (�0.39, 0.92) 0.800 0.424
[69] 16 lDLPFC rORBIT 0.0816 e 3.00 (1.99, 4.01) 5.821 <0.001

DL model 1.03 (�0.87, 2.94) 1.188 0.235
Verbal episodic memory task: recognition (stim during encoding) e cathode: ACCURACY
[68] 18 lDLPFC rORBIT 0.0286 Errorless Learning 0.120 (�0.53, 0.77) 0.360 0.719

18 lDLPFC rORBIT 0.0286 Errorful Learning �0.31 (�0.97, 0.35) �0.932 0.351
[69] 16 lDLPFC rORBIT 0.0816 e �2.35 (�3.25, �1.45) �5.117 <0.001

DL model �0.81 (�2.14, 0.51) �1.201 0.230
Visual episodic memory task: recognition (stim during encoding) e anode: ACCURACY (DLPFC)
[70] 15 lDLPFC rORBIT 0.0286 Cued Learning 0.037 (�0.45, 0.53) 0.146 0.884
[71] 24a/48s lDLPFC rDELT 0.0571 e �0.14 (�0.86, 0.58) �0.385 0.700

DL model �0.02 (�0.42, 0.39) �0.096 0.923
Visual episodic memory task: recognition (stim during encoding) e anode: ACCURACY (TEMP)
[72] 12 lATL rATL 0.0571 e �0.11 (�0.91, 0.70) �0.257 0.797
[73] 12 lSMG rORBIT 0.08 e �0.15 (�0.95, 0.65) �0.365 0.715

DL model �0.13 (�0.69, 0.44) �0.440 0.660
Visual episodic memory task: recognition (stim during encoding) e cathode: ACCURACY (TEMP)
[72] 12 lATL rATL 0.0571 e 1.10 (0.24, 1.96) 2.509 0.012
[73] 12 lSMG rORBIT 0.08 e �0.08 (�0.88, 0.72) �0.198 0.843

DL model 0.50 (�0.66, 1.65) 0.845 0.398
Visual working memory e anode/offline: ACCURACY
[55] 11 rPPC lCHK 0.0429 �0.07 (�0.90, 0.77) �0.153 0.878

11 rPPC lCHK 0.0429 �0.50 (�1.35, 0.35) �1.160 0.246
[56] 20 rPPC lCHK 0.0429 �0.42 (�1.04, 0.21) �1.298 0.194
[57] 9 rPPC lCHK 0.0938 1.06 (0.07, 2.04) 2.099 0.036

20 rPPC lCHK 0.0938 0.14 (�0.48, 0.76) 0.451 0.652
[58] 20 rPPC lCHK 0.0938 0.14 (�0.48, 0.76) 0.451 0.652
[74] 12 rPPC lPPC 0.0286 �0.42 (�1.22, 0.39) �1.005 0.315
[75] 20 rIPS lORBIT 0.0286 �0.16 (�0.78, 0.46) �0.495 0.620

DL model �0.06 (�0.35, 0.22) �0.435 0.664
Visual working memory e cathode/offline: ACCURACY
[55] 11 rPPC lCHK 0.0429 �0.09 (�0.93, 0.75) �0.211 0.833

11 rPPC lCHK 0.0429 �0.66 (�1.52, 0.20) �1.504 0.133
[56] 20 rPPC lCHK 0.0429 0.18 (�0.44, 0.80) 0.569 0.569
[59] 24 rPPC lCHK 0.0429 0.43 (�0.14, 1.00) 1.468 0.142
[74] 12 rPPC lPPC 0.0286 �0.08 (�0.88, 0.72) �0.200 0.842
[75] 20 rIPS lORBIT 0.0286 �0.14 (�0.76, 0.48) �0.448 0.654

20 rIPS lORBIT 0.0571 0.09 (�0.53, 0.71) 0.293 0.769
DL model 0.03 (�0.22, 0.29) 0.251 0.802

One-back working memory task e anode/offline: ACCURACY
[61] 10 lDLPFC rORBIT 0.05714 1-Back �0.08 (�0.96, 0.80) �0.184 0.854
[53] 12 lDLPFC rORBIT 0.02857 1-Back 0.50 (�0.31, 1.31) 1.206 0.228

DL model 0.23 (�0.37, 0.83) 0.760 0.447
One-back working memory task e anode/offline: RT
[61] 10 lDLPFC rORBIT 0.05714 1-Back 0.55 (�0.34, 1.44) 1.208 0.227
[53] 12 lDLPFC rORBIT 0.02857 1-Back �0.26 (�1.07, 0.54) �0.638 0.524

DL model 0.12 (�0.67, 0.91) 0.296 0.767
Two-back working memory task e anode/offline: ACCURACY
[61] 10 lDLPFC rORBIT 0.05714 2-Back 0.46 (�0.43, 1.35) 1.019 0.308
[53] 12 lDLPFC rORBIT 0.02857 2-Back �0.40 (�1.21, 0.41) �0.970 0.332
[76] 16 lDLPFC rMAST 0.02857 2-Back 0.39 (�0.36, 1.04) 0.949 0.343

DL model 0.14 (�0.38, 0.65) 0.515 0.606
Two-back working memory task e anode/offline: RT
[53] 12 lDLPFC rORBIT 0.02857 2-Back �0.45 (�1.26, 0.36) �1.095 0.274
[60] 18 lDLPFC rORBIT 0.02857 2-Back �0.29 (�0.95, 0.37) �0.868 0.385
[61] 10 lDLPFC rORBIT 0.05714 2-Back �0.33 (�1.22, 0.55) �0.741 0.459
[60] 18 lDLPFC rORBIT 0.05714 2-Back �0.02 (�0.68, 0.63) �0.073 0.942
[76] 16 lDLPFC rMAST 0.02857 2-Back 0.46 (�0.24, 1.17) 1.293 0.196

DL model �0.10 (�0.42, 0.23) �0.579 0.563
Three-back working memory task e anode/online: ACCURACY
[62] 15 lDLPFC rORBIT 0.02857 3-Back 0.31 (�0.41, 1.03) 0.855 0.393
[63] 12 lDLPFC rORBIT 0.02857 3-Back 0.05 (�0.71, 0.81) 0.125 0.901
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.36 (�0.37, 1.08) 0.966 0.334
[63] 12 lDLPFC rORBIT 0.05714 3-Back �0.05 (�0.81, 0.71) �0.128 0.898
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back 0.97 (0.01, 1.92) 1.988 0.047

DL model 0.28 (�0.07, 0.62) 1.589 0.112
Three-back working memory task e anode/online: FA
[62] 15 lDLPFC rORBIT 0.02857 3-Back �0.40 (�1.13, 0.32) �1.095 0.273
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.00 (�0.72, 0.72) 0.000 1.000
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back �1.16 (�2.14, �0.19) �2.339 0.019
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Table 6 (continued )

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

DL model �0.45 (�1.06, 0.16) �1.446 0.148
Three-back working memory task e anode/online: RT
[62] 15 lDLPFC rORBIT 0.02857 3-Back 0.00 (�0.71, 0.72) 0.011 0.991
[63] 12 lDLPFC rORBIT 0.02857 3-Back �0.30 (�1.11, 0.50) �0.736 0.462
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.01 (�0.70, 0.73) 0.032 0.974
[63] 12 lDLPFC rORBIT 0.05714 3-Back �0.32 (�1.13, 0.48) �0.781 0.435
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back 0.02 (�0.88, 0.92) 0.037 0.971

DL model �0.11 (�0.46, 0.23) �0.648 0.517
Three-back working memory task e anode/offline: ACCURACY
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.84 (0.10, 1.59) 2.214 0.027
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back 0.22 (�0.69, 1.12) 0.466 0.641

DL model 0.58 (�0.03, 1.19) 1.879 0.060
Three-back working memory task e anode/offline: FA
[64] 15 lDLPFC rORBIT 0.04 3-Back 0.00 (�0.72, 0.72) 0.000 1.000
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back �0.62 (�1.54, 0.31) �1.312 0.190

DL model �0.24 (�0.83, 0.35) �0.804 0.421
Three-back working memory task e anode/offline: RT
[64] 15 lDLPFC rORBIT 0.04 3-Back �0.01 (�0.72, 0.71) �0.015 0.988
[77] 9a

10
lDLPFC rCHK 0.02857 3-Back �0.02 (�0.92, 0.88) �0.047 0.962

DL model �0.01 (�0.57, 0.55) �0.041 0.967

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized mean difference; A ¼ Active; S ¼ Sham; DLPFC ¼ Dorsolateral
prefrontal cortex; ORBIT¼ Orbitofrontal location; DELT¼ Deltoid muscle; ATL¼ Anterior temporal lobe; SMG¼ Supramarginal gyrus; STRNBRG¼ Sternberg workingmemory
task; PPC ¼ Posterior parietal cortex; CHK ¼ Cheek; IPS ¼ Inferior parietal sulcus; RT ¼ Reaction time; MAST ¼ Mastoid; FA ¼ False alarms.
Verbal episodic memory: [68] presented only values pooled between online and offline measures. Two studies from [69] were omitted: one for targeting M1, one for generating
stimulation during recognition (no comparable work elsewhere). [78] was omitted due to using very-short duration (1.6 s) stimulation during recognition only (no comparable
work elsewhere). [79] was omitted due to utilizing a 5-day stimulation protocol (no day 1 data).
Visual episodic memory: Two studies from [54] were omitted as they utilized an interference paradigm in the Sternberg task (no comparable work elsewhere). [80] was omitted
due to using a 10-day stimulation paradigm (no day 1 data). Values were collapsed across array sizes.
Visual working memory: Values collapsed across hemifields and array sizes. Values for the second study from [57] and [58] are collapsed across all participants (data appear to
be identical for these studies). [81] was omitted from analysis as they did not report any data for accuracy. [59] utilized a cueing paradigm e only the data from the cue-less
trials was utilized.
Two-back: [60] was omitted from the accuracy analysis due to no discernable quantitative data being made available. A description in the text noted no effect of either low- or
high-density stimulation on accuracy.
Three-back: Only data from day one of [77] was used for analysis. Data for [64] and [63] were collapsed across two online blocks. [60] was omitted from both accuracy and RT
analysis due to no discernable quantitative data being made available. A description in the text noted no effect of either low- or high-density stimulation on accuracy or RT.
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z ¼ �0.715, P ¼ 0.474: Fig. 5d). Next, we pooled all anodal/offline
tasks exploring working memory (with a similar neural target).
Again, analysis revealed no significant SMD effect size for accuracy
(SMD [95% CI] ¼ 0.17 [�0.06, 0.4], z ¼ 1.438, P ¼ 0.151: Fig. 5g).
Finally, we pooled all anodal during encoding episodic memory
tasks. Again, analysis revealed no significant SMD effect size for
accuracy (SMD [95% CI] ¼ 0.53 [�0.33, 1.38], z ¼ 1.211, P ¼ 0.226:
Fig. 5h). Complete analyses can be found in Supplemental Material:
Table S1.

Miscellaneous: primary analysis

Due to a lack of directly replicable studies, no primary analysis
could be undertaken on these measures.

Miscellaneous: secondary analysis

Mental arithmetic
The non-directly comparable anode/offline studies revealed a

non-significant SMD effect size for task accuracy and RT (Table 7;
Fig. 6a,b). Only 1 study explored the effect of online stimulation on
this task [93]; accordingly, no analysis was undertaken. No studies
explored the effect of cathodal stimulation on this task.

Picture viewing/rating
The non-directly comparable anode/online studies revealed no

significant SMD effect size for either negative or neutral valence
image ratings (Table 7; Fig. 6c,e,f,h). Similarly, the non-directly
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comparable cathode/online studies revealed no significant SMD
effect size for either negative or neutral valence image ratings
(Table 7; Fig. 6d,g). Only 1 study explored the effect of offline
stimulation on this task [94]; accordingly, no analysis was
undertaken.

Risk taking
The remaining non-comparable anode/online studies revealed

no significant SMD effect size for task performance (Table 7; Fig. 6i).
Analysis of the non-comparable cathode/online studies revealed a
non-significant SMD effect size for task performance (Table 7;
Fig. 6j). Only 1 study explored the effect of offline stimulation on
this task [95]; accordingly, no analysis was undertaken for this
measure.

Rumination task
The non-comparable anode/offline studies revealed a non-

significant SMD effect size for rumination intensity (Table 7;
Fig. 6k). Only 1 study explored the effect of cathodal stimulation on
this task [91]; accordingly, no analysis was undertaken. No studies
explored the effect of online stimulation on this task.
Discussion

In this paper, we pooled and analyzed every cognitive outcome
measure in the literature explored by at least two different research
groups utilizing healthy adult populations, the same stimulation-
to-task relationship, the same active electrode location, and
iversity of Melbourne April 09, 2016.
opyright ©2016. Elsevier Inc. All rights reserved.



Table 7
Studies and values for miscellaneous task secondary analyses.

Study N Active Ref Density (mA/cm2) Task SMD (95% CI) Z value P value

Mental arithmetic ability e anode/offline: ACCURACY
[83] 10 rPAR lORBIT 0.0571 MULT 0.18 (�0.70, 1.06) 0.3989 0.691
[84] 16 rPAR lORBIT 0.0286 SUB �0.23 (�0.93, 0.47) �0.647 0.518

DL model �0.07 (�0.62, 0.47) �0.261 0.794
Mental arithmetic ability e anode/offline: TIME TO SOLVE
[83] 10 rPAR lORBIT 0.0571 MULT �0.18 (�1.06, 0.70) �0.398 0.691
[84] 16 rPAR lORBIT 0.0286 SUB �0.33 (�1.03, 0.37) �0.925 0.355

DL model �0.27 (�0.82, 0.28) �0.971 0.331
Negative valence picture viewing e anode/online: NEGATIVITY RATING (lDLPFC)
[85] 23 lDLPFC rORBIT 0.0571 e �0.26 (�0.84, 0.32) �0.884 0.377
[86] 16a/32s lDLPFC rM1 0.0286 e �0.37 (�0.97, 0.24) �1.192 0.233
[87] 20 lDLPFC rDLPFC 0.0429 e 0.14 (�0.48, 0.76) 0.438 0.661

DL model �0.17 (�0.52, 0.18) �0.968 0.333
Negative valence picture viewing e cathode/online: NEGATIVITY RATING (lDLPFC)
[86] 16a/32s lDLPFC rM1 0.0286 e �0.25 (�0.86, 0.35) �0.826 0.409
[87] 20 lDLPFC rDLPFC 0.0429 e 0.33 (�0.30, 0.95) 1.029 0.304

DL model 0.03 (�0.54, 0.60) 0.106 0.915
Negative valence picture viewing e anode/online: NEGATIVITY RATING (rDLPFC)
[87] 20 rDLPFC lDLPFC 0.0429 e 0.33 (�0.30, 0.95) 1.029 0.304
[88] 23a/25s rDLPFC lORBIT 0.0429 e �0.70 (�1.28, �0.12) �2.347 0.019

DL model �0.19 (�1.20, 0.81) �0.374 0.709
Neutral valence picture viewing e anode/online: NEGATIVITY RATING (lDLPFC)
[86] 16a/32s lDLPFC rM1 0.0286 e �0.12 (�0.72, 0.48) �0.389 0.697
[87] 20 lDLPFC rDLPFC 0.0429 e 0.15 (�0.47, 0.77) 0.476 0.634

DL model 0.01 (�0.42, 0.45) 0.054 0.957
Neutral valence picture viewing e cathode/online: NEGATIVITY RATING (lDLPFC)
[86] 16a/32s lDLPFC rM1 0.0286 e 0.42 (�0.19, 1.02) 1.336 0.181
[87] 20 lDLPFC rDLPFC 0.0429 e 0.33 (�0.30, 0.95) 1.026 0.305

DL model 0.37 (�0.06, 0.81) 1.673 0.094
Neutral valence picture viewing e anode/online: NEGATIVITY RATING (rDLPFC)
[87] 20 rDLPFC lDLPFC 0.0429 e 0.33 (�0.30, 0.95) 1.026 0.305
[88] 23a/25s rDLPFC lORBIT 0.0429 e �0.05 (�0.62, 0.52) �0.175 0.861

DL model 0.12 (�0.30, 0.54) 0.560 0.575
Gambling-based risk taking e anode/online: RISK PROPENSITY
[35] 10 lDLPFC rDLPFC 0.0571 MB �2.95 (�4.22, �1.69) �4.568 <0.001
[89] 12 lDLPFC rDLPFC 0.0571 GT 0.58 (�0.24, 1.39) 1.385 0.166
[90] 16 lDLPFC rDLPFC ? GT 0.14 (�0.55, 0.84) 0.404 0.687

DL model �0.67 (�2.39, 1.06) �0.754 0.451
Gambling-based risk taking e cathode/online: RISK PROPENSITY
[35] 10 lDLPFC rDLPFC 0.0571 MB �3.38 (�4.74, �2.01) �4.848 <0.001
[89] 12 lDLPFC rDLPFC 0.0571 GT �1.92 (�2.89, �0.96) �3.895 <0.001
[90] 16 lDLPFC rDLPFC ? GT 0.00 (�0.69, 0.69) 0.000 1.000

DL model �1.70 (�3.61, 0.22) �1.738 0.082
Rumination task e anode/offline: SELF-RUMINATION INTENSITY
[91] 29a/33s lDLPFC rDLPFC 0.0571 e 0.07 (�0.43, 0.57) 0.282 0.778
[92] 32 lDLPFC rORBIT 0.0571 e �0.09 (�0.58, 0.40) �0.364 0.716

DL model �0.01 (�0.36, 0.34) �0.063 0.950

General notes: Active ¼ Active electrode location; Ref ¼ Reference electrode location; SMD ¼ Standardized Mean Difference; A ¼ Active; S ¼ Sham; PAR ¼ Parietal cortex;
MULT ¼ Multiplication task; SUB ¼ Subtraction task; RT ¼ Reaction time; DLPFC ¼ Dorsolateral prefrontal cortex; MB ¼Monetary balloon analogue risk task; GT ¼ Gambling
Task.
Mental math: The value reported by [83] combined both RT and Accuracye accordingly, the same value was used for both the accuracy and RT analyses. As the value represents
an improvement following stimulation, it is represented as positive (higher score) in the accuracy analysis and negative (faster response) in the RT analysis.
Picture viewing: All sham participants were pooled for [86]. Two studies from [85] were omitted from analysis due to targeting M1 and V1, respectively (no comparable work
elsewhere). Only the ‘maintain’ condition from [88]was analyzed.
Risk taking: Due to the unknown current density of [90], we analyzed using a DL model. Two studies from [35] were omitted for not including a sham condition.
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comparing to a sham (control) condition. Of the 59 analyses un-
dertaken, tDCS was not found to generate a significant effect on any.
Taken together, the evidence does not support the assertion that a
single-session of tDCS has a reliable effect on cognitive tasks in
healthy adult populations.

A common criticism leveled at quantitative reviews concerns
biased study selection: more specifically, through more- or less-
stringent inclusion criteria, it is possible to skew analyses toward
a positive result (for discussion, see: Ref. [96]). To address this issue,
in this paper we undertook a two-tier analysis system. First we
combined only those studies which demonstrated a direct repli-
cation of tDCS parametric values. The analysis was then expanded
to combine all papers that targeted the same neural region and
utilized the same task (regardless of current density and/or
Downloaded from ClinicalKey.com.au at U
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reference electrode location). Finally, in the case of memory, the
analysis was further expanded to combine all papers that targeted
the same neural region and utilized tasks thought to measure the
same cognitive skill (e.g. e working memory). None of these anal-
ysis generated significant results. This suggests that the null results
found in this paper are not likely the result of any specific sampling
criteria (see Limitations section below).

One potential explanation for our findings rests in state-
dependency: a concept which suggests that the effect an
external stimulus exerts on the brain (and, by extension, cogni-
tion) is highly influenced by the state of the brain at the time of
stimulus onset [97]. For instance, there is a large body of litera-
ture that demonstrates that the outcomes of single-, paired-, and
repetitive-pulse TMS can be modulated according to the initial
niversity of Melbourne April 09, 2016.
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Figure 5. Forest plots for each pooled-task memory analysis (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses; DL ¼ DerSimonian-Laird mixed-effect
model for secondary analyses; Parentheses represent 95% CI).
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cortical activation state of the targeted neural region (for review:
Ref. [98]). Similarly, several studies have demonstrated that the
effect of single-session tDCS on MEP amplitude can be negated
following behavioral or cognitive priming [99,100] or reversed
following neural priming using TMS [101]. Accordingly, it is likely
that differential state-dependent effects between different
Downloaded from ClinicalKey.com.au at Un
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studies included in this analysis influenced the null results
obtained.

Luckily, state-dependent effects can be elucidated, controlled
for, and possibly even leveraged to enhance the effects of tDCS;
unfortunately, there is not enough comprehensive reporting in the
literature to undertake such a synthesis at this point. It would be
iversity of Melbourne April 09, 2016.
opyright ©2016. Elsevier Inc. All rights reserved.



Figure 6. Forest plots for both secondary miscellaneous task analyses (SMD ¼ Standard mean difference; FE ¼ Fixed effect model for primary analyses; DL ¼ DerSimonian-Laird
mixed-effect model for secondary analyses; Parentheses represent 95% CI).
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beneficial if future research included information concerning the
time-of-day, day-of-week, duration, etc. of unique stimulation
sessions and the satiation-levels, energy-levels, amount of sleep,
etc. of individual participants. The inclusion of this informationwill
not only allow for correlative and regression analyses to contextu-
alize individual findings, but will also allow for more robust and
meaningful quantitative pooling in the future.

Beyond methodological reporting, it is worth noting the relative
lack of detailed data reporting in the literature. Though many
studies explored for this analysis verbally reported a null finding on
a particular measure, many did not offer quantitative or visual data
amenable to pooling. This lack of data reporting has the undesirable
effect of skewing quantitative analyses (such as this one). Accord-
ingly, it would be beneficial if new studies included numerical data
for all measures, even those with null results: only by doing so can
more meaningful analyses take place in the future.

Limitations

A major limitation of this analysis is the lack of comparable
research available in the current tDCS literature. Of the 50 cognitive
outcome measures replicated between two different research
groups included in this paper, 35 include only 2 or 3 papers.
Accordingly, these analyses must be interpreted with caution. It is
worth noting, however, that of these 35 outcome measures, 25
include papers report opposing effect sizes. This means > 70% of
analyses which include only 2 or 3 papers contain at least 1 paper
reporting enhancement and at least 1 paper reporting impairment
following tDCS. As noted above, this may be due to varied state-
dependency effects between different studies. Until more direct
replication of older research is undertaken and more data are made
available for pooling, it is difficult to conclude the true effect of this
device.

Another limitation of this analysis concerns the population
utilized. Although our results suggest tDCS has no reliable effect on
cognitions in healthy adults, it remains to be seen whether or not
tDCS can influence these measures in juvenile, elderly, or infirm
Downloaded from ClinicalKey.com.au at U
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populations. It is certainly possible that tDCS (known to be a rela-
tively ‘weak’ form ofmodulation) simply does notwork in amanner
which can modulate a healthy, optimally performing brain (see:
Ref. [102]). This does not preclude it from being able to modulate
infirm, developing, or deteriorating brains. Additional analyses
exploring the impact of tDCS in these populations are certainly
warranted (examples of elderly population tDCS reviews:
[103,104]; examples of infirm population tDCS meta-analyses:
[105e107]).

This paper only explores cognitive measures undertaken during
or following one session of tDCS. As noted in the results section,
there are many studies which have utilized a multiple-day stimu-
lation paradigm (e.g. Refs. [39,65,79,108]). It is wholly possible that
several sessions of tDCS are required in order for a reliable effect to
be seen. In this instance, it has been argued tDCS impacts cognition
via repeated exposure and, possibly, overnight consolidation (see:
Refs. [109,110]). Unfortunately, there simply are not enough com-
parable multiple-day stimulation studies conducted by two
different research groups to assess if this is the case. As before, in
order to determine the effect of repeated sessions of tDCS, more
work directly replicating older research is required.

Conclusion

Taken together, we have found no evidence that single-session
tDCS has a reliable effect on cognitions in healthy adult pop-
ulations. When this is combined with our previous work which
suggested tDCS does not have a reliable effect on neurophysiologic
measures beyond MEP amplitude [1], it becomes difficult avoid
questions of device efficacy. It is important to note, however, that
these findings may be due to state-dependency effects which, with
elucidation, can be controlled for and leveraged. In addition, our
findings do not preclude the possibility that tDCS has an effect on
different populations (juvenile, elderly, infirm), when utilized
multiple-times over several days or weeks, or on behavioral tasks.
Nor does this preclude the possibility that tDCS could be effective if
utilized in a novel fashion (hi-definition tDCS, spinal tDCS, pulsed
niversity of Melbourne April 09, 2016.
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current tDCS, etc.). Despite this, as this field moves forward, it will
be important future studies include measures which directly
replicate prior work, explore potential state-dependent effects
within and between studies, and report quantitative data for all
explored outcome measures (so that a more clear picture of the
state of the field can be derived).
Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.brs.2015.01.400.
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