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Abstract

This note is the beginning of an attempt to try and explain how to
use contrasts to test hypothesis in the general linear model framework. I
have only addressed the two-samples T-test for the moment... Comments
are welcome to improve, simplify and/or extend this note.
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1 Introduction

Many statistical questions can be expressed as “how do some variables influence
another variable?” Here are some examples:

1. What is the influence of parents’ income on the IQ of their children?

Income and IQ are two continous numeric variables which can be anal-
ysed with a ’simple regression’ procedure where income is treated as the
predictor and IQ as the dependent variable..

2. What are the influences of parents’ income and of their own IQ on their
children’s IQ?

This is similar to above except that there are now two continuous predic-
tors: parents’ income and IQ. This can analysed with ’multiple regression’.

3. What is the influence of the sex (male vs. female) on IQ?

Here, the predictor variable ’sex’ is a categorical variable which can take
two values. This problem would classicaly be statistically analysed with
Student T test or one way analysis of variance. However, it can be analysed
with the same technique as problems 1 and 2.

The general linear model (GLM) subsumes regression (where the predictors
are continous) and analysis of variance (where the predictors are categorical).
That means that the same formalism can be applied to the two types of prob-
lems. Analysis of covariance models, which mixes categorical and continuous
predictors, are also quite naturally expressed in this framework.

Most modern statistical packages use the general linear model approach be-
cause of its flexibility. This is also the case of the brain imaging data analysis
software “SPM”.

2 Formalism

In situations relevant for the use of the GLM, there are predictor variables
(continous or discrete) and one “dependent” (continous) variable. It is assumed
that these variables are measured on n statistical cases. Continous variables
can each be represented by a column vectors with n elements. Categorical
variables can be represented by a set of as many vectors as there are categories,
where each vector contains 0s and 1s; 1s indicating the cases that belong to the
corresponding category (different types of coding for categorical variable are
also possible but let us ignore this for the moment).

The column vectors corresponding to the predicors can be packed into a
matrix X. Then, the general linear model takes the form:

Y = Xβ + e

Where:

• X is the design matrix, that is a the matrix whose column-vectors cor-
respond to the predictor variables (several columns may be associated to
one discrete predictor).
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• Y is the dependent variable.

• β are parameters which represent ’weights’ associated to each predictor
variable. They are apriori unknown and will be estimated by the algorithm
explained below.

• e is a vector of random errors; For the hypothesis tests to work, these
errors are assumed to be independent and distributed normally with a
variance σ2. Like the β, these errors are also unknown, and must be
estimated from the data.

This equation expresses that Y is the sum of a linear combination of the
column vectors of X and of random errors. This assertion may be true or false,
useful or useless. Statistics methods can only help judge whether this model is
better than other models.

One algorithm used to “solve” the above equation is called the “ordinary
least squares” (OLS). The methods searches for β and e that give the best fit,

that is minimize the “square error”: ‖e‖2 = ‖Y −Xβ‖2.

This is achieved by finding a β̂ such that Xβ̂ is as near as possible to Y ,
that is, a β̂ such that Xβ̂ is the orthogonal projection of Y onto C(X), the
vector space spanned by the columns of X. Therefore, if M is the orthogonal
projection matrix onto C(X), β̂ must verify:

MY = Xβ̂

This equation is most interesting:
First it expresses the relationships between the parameters β̂ and the data.

Understanding what the parameters mean is obviously crucial to be able to
manipulate contrasts. In one-way anova situations, MY provides the means of
the various groups, and the above equations gives the relationship between the
β̂ and the means.

Second, it is very important to realise that because M depends only on the
space spanned by X columns (C(X)), two models with different design matrices
X1 and X2 such that C(X1) = C(X2) are actually quite similar: They explain
the same amount of data (X.β), have the same error components, and each
contrast in one model will have a counterpart in the other, which will lead to
the same statistical conclusions.

Finally, it should be clear that if X is not full rank, there are infinitely
many β which fullfill the equation. The choice of β̂ is partly arbitrary. This as
an important application for contrasts. Only some of them will be meaningfull.
They are called estimable contrasts: A contrast λ is estimable iff λ.β is invariant
when β spans the solutions of MY = Xβ. In other words, the choice of a
particular β̂ solution to MY = Xβ, should not change thex conclusion reached
by examining λ.β. The next section provides an example of estimable contrasts.

It is sometimes useful to have the general formula for the orthogonal projec-
tion matrix onto C(X):

M = X(X ′X)−X ′

In the special cases of the one-way anova design matrices (with one columns
per category, dummy coding for that category), computations show that

M = BlkDiag[1/ni ∗ Jni ]
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where Jp is a square matrix p × p filled with 1s. That is, given the projection
matrix transforms a vector Y into a vector where all values are replace by the
mean of the group they belong to. For example, for the following two-samples
t-test design matrix:

X =




1 0
1 0
1 0
0 1
0 1
0 1




then

MY =




1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3



.Y =




ȳ1

ȳ1

ȳ1

ȳ2

ȳ2

ȳ2




where ȳi is the means of observations in group i.

3 Three models for the two-samples t-test

Matrix Parameters Contrasts

X =




1 0
1 0
1 0
0 1
0 1
0 1




{ β̂1 = ȳ1

β̂2 = ȳ2

(1, 0).β̂ = ȳ1

(0, 1).β̂ = ȳ2

(1,−1).β̂ = ȳ1 − ȳ2

(.5, .5).β̂ = mean(ȳ1, ȳ2)

X =




1 1
1 1
1 1
0 1
0 1
0 1




{ β̂1 + β̂2 = ȳ1

β̂2 = ȳ2

(1, 1).β̂ = ȳ1

(0, 1).β̂ = ȳ2

(1, 0).β̂ = ȳ1 − ȳ2

(.5, 1).β̂ = mean(ȳ1, ȳ2)

X =




1 0 1
1 0 1
1 0 1
0 1 1
0 1 1
0 1 1



{ β̂1 + β̂3 = ȳ1

β̂2 + β̂3 = ȳ2

(1, 0, 1).β̂ = ȳ1

(0, 1, 1).β̂ = ȳ2

(1,−1, 0).β̂ = ȳ1 − ȳ2

(.5, .5, 1).β̂ = mean(ȳ1, ȳ2)

The space spanned by these three design matrices is the same, so the pro-
jection matrix M is the same in all three cases:
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M =




1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3




Errors will be the same and the statistical tests will all lead to the same
conclusions.

• The first matrix is the simplest: there is one column for each group,
containing the corresponding indicator variables, with 1 for each case be-
longing to the group. As the parameters correspond to the means of the
groups, the contrasts are straigthforward.

Note that the constant variable (that is a column full of 1s) is absent from
this model.

• In the second matrix, the second category is not represented, yet the
constant is. The contrast (1, 0).β̂, equal to β̂1, estimates the difference
between the first and the second condition.

• The third matrix has both indicator variables for each group and also
include the global mean. It has the interesting property of not being full-
rank (that it has its columns vectors are not linearly independent: the
last is the sum of the first two, and together, these vectors span a space
of dimension 2).

This implies that there are an infinite number of β̂ solutions to the MY =
Xβ equation (which can also be seen from the equations linking β̂1, β̂2

and β̂3 to ȳ1 and ȳ2: there are 3 unknowns for only two equations.)

Another way to put it, is to notice that X.[1, 1,−1] = 0, and therefore

that ∀c : X.β̂ = X.(β̂ + c.[1, 1,−1]). So a meaningful, estimable, contrast
λ = [λ1, λ2, λ3] must be orthogonal to [1, 1,−1], that is:

λ is estimable iff λ1 + λ2 − λ3 = 0

4 Relevance to SPM

4.1 Two-samples T-test

To compare two groups in SPM, the two-samples T-test basic model will produce
a design matrix like the third in the previous section. That is, SPM creates a
column for each group and add the constant term. Therefore, the following
contrasts can be used:

(1, 0, 1).β̂ = ȳ1

(0, 1, 1).β̂ = ȳ2

(1,−1, 0).β̂ = ȳ1 − ȳ2

(.5, .5, 1).β̂ = mean(ȳ1, ȳ2)
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As one can see, the same model can be used to test the main effect of each
group (vs. 0), or even the global main effect (vs. 0). This can replace the use of
simple-T tests for each group. The appendix A provide the code for generating
these contrasts with the SPM99 batch system.

This approach is valid only if using a pooled error term for both group is
acceptable, that is if the variances in each group do not differ widely. Note also
that relative to simple t-tests, the degrees of freedom double as the variance is
estimated on twice as much data (supposing the two groups are balanced).

In any case, using these contrasts to assess the main effects of group 1 and
group 2, and compare them, is a good idea inasmuch as any difference that may
be revealed will have to be due to the differences in the size of effects rather
than to variations in within-group variances.

4.2 Modelling or not the null event

People often wonder whether they should or not model the baseline, or the ’null’
event in event-related studies.

The comparison between model 2 and model 3 above may clarify the situa-
tion: even if the null event is not modeled (like in model 2), it is automatically
taken into account by the fact that there is the constant term in the model.
Whether or not to include it in the model is a matter of taste, but then, of
course, the contrasts change according to the model chosen.

4.3 About unbalanced designs

Sometimes, the numbers of cases differ between groups, that is, the number
of subject is not balanced accross groups. This is not at all a problem for a
anova with a single between subject factor. The projection matrix Mtakes into
account the number of cases per group. Therefore the contrasts remain the
same as in the balanced design.

Unbalanced groups can only be problematic for factorial designs with at
least two between-subject factors. When subgroups have different sizes, there
are possibly two different main effects which may be relevant for each factor.
When estimating the effect of factor 1, one can take into account or not the
structure imposed by factor 2. The default solution provided (I believe but this
should be checked) by SPM, does not take into account factor 2 and corresponds
to the so-called ’weigthed’ solution. The second, so-called ‘unweigthed’ solution
(which is often the more meaningful one), the sizes of subgroups are ignored,
and each subgroup has the same weight in computing the means.

Fortunately, when subgroups are “nearly balanced”, the main effects assessed
by the weigthed and unweighted solutions do not differ much, and the choice is
irrelevant.

Note also that the ’difficulty’ of unbalancedness does not apply to interac-
tions.
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A Code for generating contrasts with SPM99
batch system

Here are two files, batch contrasts.m and cc1.m, that I use to automatically
generate the contrasts of interest for the “two samples t-test” case using the
spm99 batch system (using the command “spm bch(’batch contrasts’)”).

%%%%%%%%%%%%%%%%%%%% file batch_contrasts.m

analyses = struct( ...

’type’, [ 2 ],...

’index’, [ 1 ],...

’work_dir’, [ 1 ],...

’mfile’, [ 1 ]...

);

type = {’model’,’contrasts’,’defaults_edit’,’headers’,...

’means’,’realignment’,’normalisation’,’smooth’};

work_dir = { ’.’ };

mfile = { ’cc1.m’ };

%%%%%%%%%%%%%%%% file cc1.m

% Generate the contrasts for the SPM ’two way t test’ design

% to compare two groups: G1 vs. G2

% trick to erase all previous contrasts ((C) Christophe ;-))

load xCon

xCon(2:end)=[]

save xCon

c1=[1 0 1]; % main effect of G1>0

c2=-c1; % main effect of G1<0

c3=[0 1 1]; % main effect of G2>0

c4=-c3; % main effect of G2<0

c5=[.5 .5 1]; % global main effect (G1+G2)>0

c6=-c5; % global main effect (G1+G2)<0

c7=[1 -1 0]; % G1 > G2

c8=[-1 1 0]; % G2 > G1

contrasts(1) = struct( ...

’names’, {{’G1>0’,’G1<0’,’G2>0’,’G2<0’, ’G1+G2>0’, ’G1+G2<0’,...

’G1>G2’, ’G2>G1’}},...

’types’, {{’T’,’T’,’T’,’T’,’T’,’T’,’T’,’T’}}, ...

’values’, {{c1,c2,c3,c4,c5,c6,c7,c8}}...

);

7


	Introduction
	Formalism
	Three models for the two-samples t-test
	Relevance to SPM
	Two-samples T-test
	Modelling or not the null event
	About unbalanced designs

	Code for generating contrasts with SPM99 batch system

